logo - 刷刷题
下载APP
【简答题】

证明设f是定义在Rn上的函数,如果对每一点x ∈Rn及正数t均有f(tx)=tf(x),则称f为正齐次函数.证明Rn
设f是定义在Rn上的函数,如果对每一点x ∈Rn及正数t均有f(tx)=tf(x),则称f为正齐次函数.证明Rn上的正齐次函数f为凸函数的充要条件是,对任何x(1),x(2)∈Rn,有 f(x(1)+x(2))≤f(x(1))+f(x(2)).

举报
参考答案:
参考解析:
.
刷刷题刷刷变学霸
举一反三

【单选题】n维向量组α 1 ,α 2 ,…,α 3 (3≤s≤n)线性无关的充要条件是 ( )

A.
存在一组全为零的数k 1 ,k 2 ,…,k s ,使k 1 α 1 +k 2 α 2 +…+k s α s =0
B.
α 1 ,α 2 ,…,α s 中任意两个向量都线性无关
C.
α 1 ,α 2 ,…,α s 中任意一个向量都不能由其余向量线性表出
D.
存在一组不全为零的数k 1 ,k 2 ,…,k s ,使k 1 α 1 +k 2 α 2 +…+k s α s ≠0

【单选题】设A,B都是n阶对称矩阵,则AB是对称矩阵的充要条件是

A.
AB=BA
B.
A, B都是对角矩阵
C.
A是对角矩阵
D.
B是对角矩阵