logo - 刷刷题
下载APP
【简答题】

设n维向量α1,α2,…,αs线性无关,而α1,α2,…,αs,β线性相关,证明β可以由α1,α2,…,αs线性表出,且表示方法唯一.

举报
参考答案:
参考解析:
.
刷刷题刷刷变学霸
举一反三

【单选题】n维向量组α 1 ,α 2 ,…,α 3 (3≤s≤n)线性无关的充要条件是 ( )

A.
存在一组全为零的数k 1 ,k 2 ,…,k s ,使k 1 α 1 +k 2 α 2 +…+k s α s =0
B.
α 1 ,α 2 ,…,α s 中任意两个向量都线性无关
C.
α 1 ,α 2 ,…,α s 中任意一个向量都不能由其余向量线性表出
D.
存在一组不全为零的数k 1 ,k 2 ,…,k s ,使k 1 α 1 +k 2 α 2 +…+k s α s ≠0

【单选题】设n维向量组 , ,... 线性无关,则( )

A.
向量组中任一向量均可由其余向量线性表示
B.
向量组中只有一个向量可由其余向量线性表示
C.
向量组中存在某一个向量可有其余向量线性表示
D.
以上说法都不正确

【单选题】线性相关系数可以表达的两变量间( )。

A.
线性相关程度、线性相关方向、因果关系
B.
线性相关程度、因果关系
C.
线性相关方向、因果关系
D.
线性相关程度、线性相关方向