有n(n≥2)个整数a1
有n(n≥2)个整数a1<a2<a3<…<an,它们满足下列条件:
① 如果对于其中的任意一个整数am,都有-am不在这n个整数中,则称这n个整数满足性质P;
② 若在这n个整数中选两个不同的整数ai,aj,使它们成为一个有序整数对(ai,aj),并恰好ai+aj也在这n个整数中,则这样的整数对为“和整数对”;
③ 若在这n个整数中选两个不同的整数ai,aj,使它们成为一个有序整数对(ai,aj),并恰好ai-aj也在这n个整数中,则这样的整数对为“差整数对”.
回答问题:
3个整数-1,2,3是否满足性质P?如果满足性质P,请写出其中所有的“和整数对”和“差整数对”.